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Introduction 

Modeling tools for the prediction of microstructural evolution are needed to optimize 

thermomechanical processing, in order to guarantee consequent mechanical properties 

and reduce process definition time and manufacturing costs. The usual method, based 

on the so-called Avrami formulation, has been applied with great success for the past 

decades. In particular, its implementation in FEM codes subroutines, which require low 

additional computational power, has provided a useful tool for manufacturers [1]. 

However, this method exhibits some limitations. Firstly, when dealing for instance with 

nickel base superalloys, the presence of a precipitation domain at the low values of the 

hot working temperature range, may it be phase δ for niobium hardened ones as 

Superalloy 718, or γ’ for titanium and aluminum hardened ones as Waspaloy, induces a 

change in recrystallization kinetics that can hardly be managed in another way than 

defining temperature intervals, at the limit of which the continuity of the model is not 

guaranteed [2]. In addition, subtle variations of composition for a given alloy from a 

manufacturer to another affect the solvus temperature of these phases, which should 

be accounted for by changing temperature interval limits. But since the Avrami 

formulation parameters are not physically representative, such changes are difficult to 

manage and the overall reliability of the model is affected. Secondly, the Avrami 

formulation is set for one-hit sequences of dynamic and metadynamic recrystallizations, 

whereas industrial process involves numerous steps from ingots to final products. In 

some cases, for one single processing step, as cogging, the total strain is reached by 

accumulating several hits, which produce successive waves of dynamic and 

metadynamic partial recrystallizations. To make the Avrami formulation deal with such 

cases requires the use of some modifications, which, once again, bring such a model 

into a questionable area of application. The third kind of limitation may be the most 

fundamental and stands as a long term problem. Both academic and industrial 

laboratories have been performing studies of microstructural evolution for numerous 
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alloys, which lead in the end to the development of Avrami models for many of them. 

But, even if the range of investigation is limited to nickel base superalloys only, there 

are far more alloys than what can be reasonably studied with extensive experiments 

over the full domains of temperature, strain rate, initial microstructure… etc. which are 

necessary to fit an Avrami model. Scientists and engineers have long identified 

similarities of behavior from an alloy to the other. But the use of the Avrami model 

prevents from connecting the studies. Whatever the amount of data that has been 

collected before on alloys of comparable compositions and exhibiting the same 

characteristics, it is not possible to benefit from a capitalization of this knowledge when 

it comes to develop a model of recrystallization based on the Avrami equation, because 

its parameters have limited physical meaning. 

To progress in the direction of solving these limitations, it is necessary to develop a new 

kind of model of recrystallization. One of the difficulties lies in the fact that such a 

model has to satisfy at least the two following contradictory criteria: 

- the model has to be physically-based, which means that its components and its 

adjustable parameters have to be as meaningful as possible, 

- the model has to require relatively low computational power, not so much to 

insure that it is applicable with FEM calculations, but even before that, simply 

to be able to manage its resolution, since it requires far more time and analysis 

than running the model on FEM once it is ready for it. 

 

A model that aims at being a good compromise of these criteria has been developed. It 

could be qualified as a meso-scale mechanism-based recrystallization model. It is 

positioned between, on the one hand, the low CPU power and low physics 

representation level of the “macro” Avrami model, and on the other hand, the high CPU 

power and high physics representation level of “micro” approaches like Monte-Carlo or 
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Cellular Automata. Inspired from previous models [3, 4], it was developed in the context 

of a program that aims at the development of models for microstructural evolution 

during the primary processing of superalloy ingots, firstly focused on Waspaloy [5].  

 

In the first part of this paper, the method used to describe microstructures and their 

geometry-related properties will be presented. The second part deals with the 

representation of mechanisms of microstructural evolution, or in other words, the way 

driving forces affect microstructures described in the first part. The third part discusses 

the method used to carry out the resolution of the model so that it fits the behavior of 

Waspaloy, from primary processing of ingots to the forging of wrought microstructures. 

 



 

4 

I. Microstructure description – geometric framework 

Any model of recrystallization relies on two complementary sides: the first is the set of 

assumptions used to describe microstructures, and the second is the set of equations 

that aim at representing driving forces. These two sides are connected through the 

integration method, by which these equations affect the modeled microstructures. The 

representation of mechanisms lies in this connection. For Avrami models for instance, 

even if they are integrated into the Avrami equation, these two sides can be identified 

originally. The microstructure description involves nuclei placed into a non-

geometrically defined matrix, with possible impingement. And the driving forces are 

supposed to result in the nucleation and growth rates of nuclei. On the opposite, for 

Cellular Automata and Monte-Carlo models, the microstructure description involves a 

very refined regular grid and the (local) driving forces affect the behavior of cells. In the 

end, the aggregate of these cells is supposed to behave like grains, whose geometry is 

not actually defined. 

The microstructure description used in this model is located between these two 

extremes. It is based on Meso-Structural Units (MSUs). These can be understood as 

families of grains that have similar properties, may it be due to intrinsic parameters 

(e.g. specific crystallographic orientation) or because they had similar previous 

histories. These grains are expected to exhibit similar behaviors during further 

evolution. Grains are assigned two kinds of variables to define them. For geometric 

description, these variables are the grain density and at least one dimension. Few 

others are added to define more intrinsic properties such as Taylor factor or dislocation 

density. Grains and MSUs properties are supposed to be averages over the population 

they represent. Such description based on MSUs aims at lightening computational 

power. It allows distinction between grains that are expected to have different 

evolutions, but without going as far as describing each grain individually. For instance, 

to represent the microstructure of an alloy that is recrystallizing, at least two MSUs are 
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required: one for initial grains, and one for the recrystallized ones, the second being 

consuming the first. But if specific insight is wished, more MSUs can be defined. For 

example, another one will be needed to distinguish between recrystallized grains that 

appeared during the current deformation and those that appeared during previous hits. 

The latter are expected to be coarser and have higher dislocation densities than the 

ones of the current hit. 

To deal with the part of the microstructure description that is only related to geometry, 

the model relies on what can be called a geometric framework, more than just a 

geometric description. It means that the geometric aspects do not only lie in variables, 

but also in geometric laws that connect them. For instance, in the model, a grain is 

defined as much by its dimensions as by the equation used to calculate its boundary 

surface. This is related to the language used to implement the model, C++, object-

oriented, in which classes of objects are not only defined by “member variables” but also 

by “member functions”. The transition from a simple geometric description to a 

geometric framework is about the same as from a C structure to a C++ class. The role of 

the functions that are attached to the geometric description is to provide a clear set of 

rules to constrain the various geometric variables in a framework, in order to insure 

that these variables remain meaningful altogether and that the geometric part of the 

model is somewhat autonomous and self-consistent. The most critical operation for 

geometric representativeness and consistency is the calculation of grain interactions, as 

it combines all geometric assumptions. 

 

Two types of grain interactions have to be considered: 

- Interactions between grains of the same MSU: These imply no change of the 

volume of the MSU. As a consequence, any change of grain size (or equivalently 

of boundary density) has to be accompanied by a change of the grain density. 
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This is typically the case of static grain growth, where the finest grains of the 

microstructure disappear via grain boundary tension. 

- Interactions between grains of different MSUs: These imply a change of the 

volume of the MSU, as the grains of the MSU grow or decrease keeping a 

constant grain density. In order to insure the volume conservation of the whole 

structure, the volume variation of an MSU due to its interaction with grains of 

another MSU has to be compensated by an opposed variation of the volume of 

the second one. 

I.A.Isotropic grains interactions 

In the case of isotropic grains, for any MSU i, grains are supposed to be spheres of 

diameter Di. Their volume density is noted ni. The volume enclosed in the grain envelope 

is expressed in equation (I-1) and the total volume of MSU i is given by equation (I-2). 

 3

6 iei Dv π
=  (I-1) 

 Vei = ni vei = ni
π
6

Di
3 (I-2) 

Grain boundary surfaces will be needed too. The surface sei of one grain is given by 

equation (I-3) and the boundary density of MSU i, noted Sei, is given by equation (I-4). 

 sei = π Di
2  (I-3) 

 Sei =
ni sei

2Vei

= 3
Di

 (I-4) 

The volume variation of grains is related to the volume swept by its migrating grain 

boundary, as expressed in equation (I-5), where u  is the migration rate of a boundary 

of surface s. 

 usv =  (I-5) 
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For the variation of the volume defined by a sphere, equation (I-5) is naturally verified, 

as revealed by the derivation of equation (I-1), shown below in equation (I-6), where iu  

is the average migration rate of the boundary of grains i. 

 iei
i

iei us
D

Dv ==
2

2π  (I-6) 

I.A.1. Interaction probabilities for isotropic “necklace” topology 

In order to calculate the interaction of the grains of MSU i with another MSU j, it is 

necessary to decompose equation (I-6) by identifying the contribution of each MSU of 

the structure. The decomposition of equation (I-6), in the sum of equation (I-7), allows 

the distinction of the various contributions. In the latter equation, sij can be seen as the 

statistical expectancy of the surface of contact of a grain of MSU i with grains of MSU j, 

iju  is the migration rate of a grain i – grain j boundary, and ijv  is the volume variation 

of a grain i due to its interaction with grains of MSU j. 

 ∑∑
−

=

−

=

==
1

0

1

0

MSUMSU N

j
ij

N

j
ijijei vusv  (I-7) 

Assuming a uniform probability of contact with grains of any MSU j (through their 

boundary) among all the grains of the microstructure, one can write equations (I-8) and 

(I-9). 

 sij = q jsei  (I-8) 

where the probability of contact qj is : 

 q j =
n jsej

nk sek
k= 0

N MSU −1

∑
=

n jsej

Stotal

 (I-9) 

This probability of interaction is consistent with previous models [3] and has even been used 

explicitly elsewhere too [6, 4]. 
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Then the volume variation of a grain of MSU i due to its interaction with grains of MSU j is 

given by equation (I-10). 

 ij
total

ejj
eiijijij u

S
sn

susv ==  (I-10) 

And the volume variation of the whole MSU i due to its interaction with MSU j is expressed 

in equation (I-11). 

 jijijijji
total

eii
ejjij

total

ejj
eiiijijiij Vusnu

S
sn

snu
S

sn
snusnV −=−=−===  (I-11) 

Hence volume conservation of the whole microstructure is insured. 

This approach is valid as long as the various grains only interact through their 

envelope. However, volume nucleation has been observed, on Waspaloy ingot 

microstructures for instance [5]. In such a case, the previous assumptions are not 

acceptable anymore, since the surface of contact between grains of different MSUs does 

not only lie in their envelope but also in the interface between the grain matrix and the 

bubbles of recrystallized grains that nucleated and subsequently grew inside the volume 

of initial grains. Therefore, preceding equations have to be modified to account for a 

“necklace and bubbles” topology. 

I.A.2. Interaction probabilities for isotropic 

“necklace and bubbles” topology 

In this new topology, bubbles of grains are allowed to develop inside the grains of MSU 

i. The first modification to bring to the model relates to the volume of grains. It is 

necessary to accept to give up the rather comfortable equation connecting the volume of 

grains to their diameter. From now, vei, in equation (I-1), only symbolizes the volume 

enclosed in the grain envelope, but not the volume of material that really belongs to the 

grain itself. The latter will be noted vi, and it is inferior or equal to vei. vi is an additional 
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constitutive parameter of the grains of MSU i to be considered on the same level as their 

diameter Di in terms of geometric description. This parameter will allow dealing with 

bubbles topology in a realistic and physically admissible way. Firstly, one can define 

naturally the fraction Xbi of bubbles in the grains of MSU i as given by equation (I-12). 

 Xbi =1− vi

vei

 (I-12) 

A material parameter is needed for an accurate definition of the microstructure: the 

density of sites of volume nucleation, noted nPSN. Typically, it will be the density of 

second phase particles that induce a wide-enough spread of crystallographic 

orientations in their neighborhood to activate nucleation [7]. Using this parameter 

makes possible to calculate the diameter Dbi of the bubbles in the grains of MSU i, 

thanks to equation (I-14), which is deduced from equation (I-13). 

The volume of bubbles in a grain i is : 

   ieibieiPSN vvDvn −=3

6
π

 (I-13) 

Then 
3

1

6
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

PSN

bi
bi n

X
D

π
 (I-14) 

I.A.2.a. Surface of interaction of bubbles 

In order to evaluate grain interaction probabilities later, the surface of contact of the 

bubbles with the matrix of a grain has to be calculated. It is not simply the sum of the 

surfaces of the bubbles written in equation (I-15), because some impingement of 

bubbles may occur when they are large enough. 

 2
biPSNeibei Dnvs π=  (I-15) 
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Equation (I-5) can be applied to the volume variation of the bubbles, which gives biv  in 

equation (I-16), where sbmi is the surface of contact between a bubble and the 

surrounding matrix of MSU i, and qbmi is the fraction of the bubble surface ( πDbi
2 ) that is 

in contact with the matrix but not with another bubble. bmiu  is the migration rate of 

bubble-matrix interface. 

 bmibibmibmibmibi uDqusv 2π==  (I-16) 

Then bmibeibmibi usqX =  (I-17) 

In equation (I-17), bmibei us  would be the volume variation of bubbles if there were no 

impingement, i.e. if the volume consumed were only in the matrix. But, statistically, 

only a fraction 1-Xbi of this volume variation would be taken over the matrix. The 

complement of this fraction would be taken only virtually over neighboring bubbles as 

they impinge. Equation (I-18) comes as a consequence. 

 qbmi =1− Xbi  (I-18) 

And therefore, the fraction of surface of the envelope of bubbles that is involved in 

impingement is equal to the volume fraction of bubbles Xbi. Finally, the surface sbi of the 

bubbles that is really in contact with the matrix of a grain of MSU i, is given by equation 

(I-19). 

 22)1( biPSNibiPSNeibibeibmibi DnvDnvXsqs ππ =−==  (I-19) 

Knowing the actual surface of interaction of bubbles of recrystallized grains with the 

surrounding grain matrix, it is possible to investigate the various types of grain 

interactions and their respective contributions. 
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I.A.2.b. Total grain boundary surfaces 

Not all grains are subjected to volume nucleation. In practice, only the biggest ones can 

exhibit a bubble topology. For finer grains too, nucleation can be enhanced by second 

phase particles, but bubbles are quickly connected to the developing necklaces, and the 

influence of a bubble topology can be neglected. As a consequence, support for bubble 

topology is only activated for the first Nbt MSUs of the structure, as they may be 

initialized with coarse ingot grains. Nbt is strictly lower than NMSU, which means that at 

least the current recrystallized grains, which are stored in the MSU of highest index, are 

supposed not to be a place for volume nucleation. Recrystallized grains are finer by 

definition. In addition, in order to limit complexity, assumption is made that the only 

grains that can be found in bubbles are those which index is higher than Nbt. In other 

words, bubbles inside of bubbles, like Russian headstocks, are not allowed. This is not 

really a restriction. Typically, the MSUs of which index is between Nbt and the highest 

index, will contain grains that recrystallized during the previous steps of the process or 

during previous hits. Thus one can expect that they will not be coarse enough to 

develop a bubble topology anyway. 

As seen previously, in equation (I-9), the calculation of probabilities of contact with the 

grains of another MSU j involves the fraction of the grain boundary surface of this MSU 

among the total boundary surface. The situation here is a little bit more complex since 

two fundamentally different types of grain interactions exist. Envelope-envelope 

interactions (Figure I-1-a) and bubble-envelope interactions (Figure I-1-b) do not have 

the same effects. The first affect grain size and volume, whereas the second only affect 

the volume of grains from the inside, without changing their envelope dimension. One 

could think about bubble-bubble interactions here but contact between bubbles has 

already been accounted for at the occasion of previous bubbles impingement 

considerations. 
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As a consequence, it is necessary to distinguish two total surfaces: on the one hand, the 

total boundary surface involved in envelope-envelope interactions, and on the other 

hand, the total boundary surface involved in bubble-envelope interactions. They are 

noted respectively Se total and Sb total. The latter comes naturally, in equation (I-20).  

 Sb total = nk sbk
k= 0

Nbt −1

∑  (I-20) 

The total surface of grain boundaries involved in envelope-envelope interactions, Se total, 

is the total surface of grain envelopes minus the part of envelope boundaries that are 

also bubble boundaries, which is Sb total by definition. This is mathematically translated 

in equation (I-21). 

 Se total = nk sek
k= 0

N MSU −1

∑ − Sb total  (I-21) 

Knowing these two total boundary surfaces, normalization of grain interaction 

probabilities will be possible.  

I.A.2.c. Grain boundary surfaces involved in each type of interaction 

As a distinction was made between envelope-envelope and bubble-envelope total 

boundary surfaces, the same has to be carried out for individual grain boundary 

surfaces. For the grains of each MSU i, parameters qeei and qbei are defined as the 

fraction of the boundary surface of their envelope being in contact with respectively the 

envelope boundary of other grains or with the bubble boundary of other grains. For i 

strictly lower than Nbt, qbei is null, as these grains are not allowed to be in the bubbles of 

other grains. And consequently, qeei is equal to 1. For other MSUs (i ≥ Nbt), assumption 

is made that each of them contributes to Sb total proportionally to its own surface, which 

is expressed in equation (I-23), from which qbei is deduced in equation (I-24). Equation 
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(I-22) defines an intermediate value, Sebc total, as the total amount of envelope boundaries 

of grains that can have nucleated in bubbles, and thus which potentially contribute to 

the bubbles surface. Finally, qeei is the complementary part of qbei, as written in equation 

(I-25). 

 Sebc total = nk sek
k=Nbt

N MSU −1

∑  (I-22) 

 qbei ni sei =
ni sei

Sebc total

Sb total  (I-23) 

Then qbei  i≥Nbt =
Sb total

Sebc total

 (I-24) 

 qeei =1− qbei  (I-25) 

Equation (I-24) shows that all the MSUs which envelope contributes to interaction in 

bubbles have the same proportion of envelope-envelope and envelope-bubble 

interactions. 

It is now possible to evaluate the probability of interaction for each pair of MSUs. 

I.A.2.d. Interaction probabilities 

We investigate now the probability for a surface unit of grain boundary of MSU i to be 

an interface with a grain of MSU j. In other words, we are looking for the equivalent of 

equation (I-9) but for the case of a necklace and bubbles topology. Here again, the 

distinction between envelope-envelope interactions and envelope-bubble interactions is 

necessary. Thus we define two parameters, qeeij and qbeij, as the probabilities of contact 

involving respectively envelope-envelope and envelope-bubble interactions. 

The first probability, qeeij, is the fraction  of the envelope surface of grain i that is in 

contact with other grain envelope (qeei), multiplied by the fraction (qeej) of the surface of 
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envelope of grains of MSU j (nj sej) which is also in contact with a grain envelope, among 

all envelope boundaries (Se total). This is written in equation (I-26). 

 qeeij = qeei
qeej n jsej

Se total

 (I-26) 

The expression of qbeij depends on the value of i. If i is strictly lower than Nbt, then qbeij is 

the fraction of the bubble surface of a grain of MSU i (qbej) that is in contact with the 

envelope of grains of MSU j (njsej), among all bubble boundaries (Sb total). This is expressed 

by equation (I-27). 

 qbeij i<Nbt =
qbej n jsej

Sb total

 (I-27) 

If i is higher than or equal to Nbt, qbeij is the fraction of the envelope surface of grain i 

(qbei) that can be also a bubble boundary, multiplied by the surface of bubbles inside 

grains of MSU j (njsbj), among all bubble boundaries (Sb total). This is translated in 

equation (I-28). 

 qbeij i≥Nbt = qbei
n jsbj

Sb total

 (I-28) 

Using these probabilities, it is possible to evaluate the variations of grain size, grain 

volume and total MSU volume in the various possible situations. 

I.A.2.e. Variations of grain size, grain volume and whole MSU volume 

Variations of grain size, grain volume and MSU volume depend on the interaction type, 

that is if, on the one hand, it is an envelope-envelope interaction or an envelope-bubble 

one, and on the other hand, if it is an interaction between grains of different MSUs or of 

the same MSU.  
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Interactions between grains of different MSUs 

Interactions between different MSUs are the most various but also the easiest to deal 

with. The first, which is envelope-envelope interaction, affects all parameters, as written 

in equations (I-29), (I-30) and (I-31). 

 ijeieeijij usqv =  (I-29) 

 ijiij vnV =  (I-30) 

 ijeeijij uqD 2=  (I-31) 

The second, which is envelope-bubble interaction, involve actually two symmetrical 

behaviors, depending on the location of grains. If we assume that i is lower than Nbt and 

j is higher than Nbt, then grains i contain some j grains. For the first ones, there will 

only be a volume variation of the grains and of the MSU, but not of the apparent grain 

size. For the others, all parameters will change. These behaviors are written in 

equations (I-32) to (I-37). Equation (I-36) is developed to demonstrate that envelope-

bubble interactions, though built by following a somewhat complex process, are finally 

volume conservative too. 

 ijbibeijij usqv =  (I-32) 

 ijiij vnV =  (I-33) 

 0=ijD  (I-34) 

And inversely, jiejbejiji usqv =  (I-35) 
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 jibejiji uqD 2=  (I-37) 

Interactions between grains of the same MSU 

Interactions between grains of the same MSU involve envelope-envelope interactions 

only. They produce no change of the total volume of the MSU, but an increase of the 

volume and size of grains. Consequently, in order to keep MSU volume constant, grain 

density has to decrease. 

Equivalence between grain boundary density and grain size is written in equation (I-38). 

This equation is derived in equation (I-39). The variation of all parameters comes from 

the boundary density that disappears due to boundary migration, whose effect is 

written in equations (I-40) and (I-41). It can be understood as the fact that some moving 

boundaries meet each other and only one boundary remains where there were two. 

Finally, comparing equations (I-39) and (I-41) gives the relationship between the 

boundary migration rate and the grain size variation. 

On the one hand Sei =
ni sei

2Vi

= 3
(1− Xbi)Di

 (I-38) 

Then, by derivation, as Xbi does not change through in-MSU interactions: 
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On the other hand iieeiieibiiswept uqSXv )1( −=  (I-40) 
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Combination of (I-39) and (I-41) gives: 

 iieeiii uqD 3=  (I-42) 

Once the grain size variation is obtained, it has to be translated into the grain volume 

variation. By definition of Xbi, one can write equation (I-43). As Xbi does not change 

through in-MSU interactions, the derivation of the latter leads to equations (I-44) and 

then (I-45). 
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 (I-43) 
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Another refinement is still needed to be able to represent correctly ingot microstructure 

geometry: the grains of ingot microstructures are anisotropic. For them, the assumption 

used until now that grains can be represented by spheres is not appropriate. 

I.B. Anisotropic grains 

To deal with the evolution of anisotropic structures, as solidification ones, which exhibit 

columnar grains, it can be interesting to investigate an extension of the spherical grains 

behavior formulation to an ellipsoidal configuration. Actually, it does not come as 

naturally as one could expect. 

For an MSU i, grains are now described as ellipsoids of main axis Dxi, Dyi, Dzi. Their 

volume density is still noted ni. The volume defined by the grain envelope is expressed 

in equation (I-46) and the total volume of MSU i is given by equation (I-47) below. 

 vei =
π
6

DxiDyiDzi (I-46) 
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 Vei = ni vei = ni
π
6

DxiDyiDzi  (I-47) 

When it comes to evaluate the surface of an ellipsoidal grain boundary, there is actually 

a problem: no general analytical equation for the surface of a three-axis ellipsoid exists. 

Only for two-axis ellipsoids, two equations exist depending on the shape of the ellipsoid, 

i.e. if the original sphere has undergone uniaxial compression or uniaxial traction. 

However, applying equation (I-5) to the derivative of equation (I-46), shown in equation 

(I-48) (considering that the migration rate is the same on each of the three axis) gives a 

way out to define the grain boundary surface, shown in equation (I-49). 

 ( ) ( ) ixiziziyiyixi
i

xiziziyiyixiei uDDDDDD
D

DDDDDDv ++=++=
323
ππ

 (I-48) 

 sei =
π
3

DxiDyi +DyiDzi +DziDxi( ) (I-49) 

The latter is different from any equation giving the surface of an ellipsoid. The reason 

for that lies in the fact that when the link is made between equations (I-5) and (I-48), 

assumption is implicitly made that when an ellipsoid grows or decreases through the 

migration of its boundary, orthogonally to its boundary, due to a pressure, it remains 

an ellipsoid. This assumption is wrong. This lies in the difference between the real 

surface that should be applied in equation (I-5) and the one given by equation (I-49). 

This difference can be up to 30%, but it is already a noticeable improvement compared 

to considering grains as spheres. In addition, these surface considerations should be 

seen more as a way to access problems of space filling that derive into probabilities of 

contacts of grains, than actual grain surfaces anyway. 

Most of the equations of the isotropic case do not really depend on the grain shape 

because their expressions only involve boundary surfaces. Thus from that point, all the 

previous equations related to interactions between grains of different MSUs (interaction 

probability, volume variations, grain size variations etc.) can be applied directly to 
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anisotropic grains, just taking care to apply the appropriate surface expressions. One 

can see here one of the advantages of defining properly a geometric framework. 

However, for interactions between grains of the same MSU, some equations need few 

modifications to be applied correctly, because the grain boundary density, given by 

equation (I-50), is different from its isotropic form. 
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Derivation of the latter, assuming the variation of dimensions is the same on all axis, 

gives equation (I-51). 
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The volume swept by the moving boundaries written in equation (I-52) is still as written 

previously in equation (I-40). It leads however to a new expression for the diminution of 

boundary density in equation (I-53). The combination of equations (I-51) and (I-53) gives 

the grain size variation, written in equation (I-54). 
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Once the grain size variation is obtained, it has to be translated into the grain volume 

variation. By definition of Xbi, one can write equation (I-55).  
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As Xbi does not change through in-MSU interactions, the derivation of the latter leads to 

equations (I-56) and (I-57). 
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The comparison of the last equation with equation (I-45) reveals that its latest form is 

the one to use to make it independent of grain shape assumptions and finally come 

back into the geometric framework. 

I.C. Geometric effects of nucleation on grains and MSUs 

To initiate significant grain interactions, the MSU that contains the recrystallized grains 

has to be initialized and renewed thanks to the reception of nuclei coming form other 

MSUs, and progressively during deformation, more and more from itself. It means that 

some volume of initial grains has to be transferred to the MSU of recrystallized grains. 

Such transfer affects all geometric variables. 

Two nucleation rates for each MSU are defined. The first, usual one, which is 

responsible for necklace formation is noted iNn . The second, more unusual, is the 

nucleation rate in the volume, noted iNVn . Nuclei size is supposed to be the same in 

any MSU and noted DN. When nuclei are generated in an MSU, it is responsible for two 

volume losses for the MSU and its grains, depending on the site of nucleation 

considered. Equations (I-58) and (I-59) show the volume variations due to necklace 

nucleation. Equations (I-60) and (I-61) are almost identical for volume nucleation. 
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 3

6 NiNiN Dnv π
=  (I-58) 
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6 NiNiiNiiN DnnvnV π
==  (I-59) 

 3

6 NiNViNV Dnv π
=  (I-60) 

 3

6 NiNViiNViiNV DnnvnV π
==  (I-61) 

When it comes to evaluate the effect of nucleation on grain size, only necklace 

nucleation affects the envelope of grains and thus their dimensions. To convert the 

volume variation of equation (I-58) into a grain dimension variation, once again, 

equation (I-5) is applied. Even if the envelope boundary may not actually migrate, it 

moves on a geometric point of view, and the relationship between volume change and 

boundary movement remains identical. Equation (I-62) comes as a result of the 

inversion of equation (I-5) applied in this context. 

 
ei

iN
iN s

v
D 2=  (I-62) 

It is to be noticed that the growth of bubbles due to volume nucleation comes naturally 

through the geometric framework. As soon as volume nucleation is initiated, the 

diminution of the volume of material that belongs to the grain is greater than the 

volume delimited by its envelope, because equation (I-62) is only applied for necklace 

nucleation. The consequence of such volume diminution is an increase of the fraction of 

bubble in equation (I-12), which induces an increase of the bubble diameter in equation 

(I-14). Then the chain of consequences continues with an increase of the surface of 

interaction of bubbles in equation (I-19), which affects further all the probabilities of 

grains interactions. The overall probability and surface of interaction of recrystallized 

grains with initial grains increases, which is to produce an acceleration of the 



 

22 

consumption of initial grains by the recrystallized ones, just by geometric effects. If the 

same density of nuclei were entirely affected to the necklace, recrystallized grains would 

have lower surface of interaction with initial grains, which would lead to a lower 

contribution of grain growth to the recrystallization rate. 

To finish with nucleation, the transfer of nuclei to the MSU of recrystallized grains has 

to be dealt with. First, the total volume of nuclei produced in the other MSUs has to be 

added in order to know the volume increase of the MSU of recrystallized grains, whose 

index is supposed to be NMSU - 1. This volume is evaluated using equation (I-63). 
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iNViNN VVV  (I-63) 

This volume variation is added to the volume variations that are due to grain 

interactions. To evaluate the grain size variation induced by the nuclei that are added to 

the MSU (a grain refinement one can expect), it is accounted in a way similar to the 

interaction of an MSU with itself. But instead of considering a grain boundary density 

diminution through a swept volume, the reception of nuclei is treated as an increase of 

the boundary density. As a consequence, the total surface of nuclei generated in the 

structure is needed, including those that appeared in the MSU of recrystallized grains 

itself. It has to be normalized by the volume of the MSU of recrystallized grains to be 

converted into its local grain boundary density increase. This is calculated using 

equation (I-64). 
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We have to precise that during the numerical integration of the model, it is always the 

new volume VNMSU-1(t+δt) that is used when some nucleation occurs, in order to avoid any 

division by a null term. By the way, this allows in addition dealing properly with the 

initialization of the MSU of recrystallized grains, when it receives the first nuclei. 
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Using equation (I-51) for the case of isotropic grains and without bubbles gives the 

grain size variation of the recrystallized grains that is related to nucleation. It is written 

in equation (I-65). 
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The second form of the expression is the actual one used. And when the MSU of 

recrystallized grains has not been initialized yet, the boundary density that is used to 

avoid a division by a null term is the one resulting from the integration of the nuclei 

boundary generation through the increment: tS N δ . 

Restricting equation (I-57) to the case of isotropic grains that contain no bubble, gives 

the apparent volume variation of the grains, in equation (I-66). 
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As expected, the effect of the reception of nuclei by the MSU of recrystallized grains 

contributes as a grain refinement since equation (I-65) gives a negative term. When the 

structure is entirely recrystallized, the MSU of recrystallized grain is the only one that 

contains grains and it interacts only with itself. The sweeping of its boundaries 

produces a grain size increase through equation (I-54). And nucleation (its own actually) 

tends to reduce its grain size with equation (I-65). As a consequence, the geometric 

framework provides in itself a tendency for the model to reach a dynamic steady state. 

From that point, all geometry aspects are set and the geometric framework is locked. It 

needs two types of input: 
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- nucleation rates and nuclei size, 

- the terms of grain boundary velocities iju , to make the grains grow or be 

consumed through grain interactions. 

Now, the second part will discuss how these nucleation and migration rates are 

calculated along with other driving forces and mechanisms. 
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II. Driving forces and mechanisms 

Driving forces can be parted into three main groups which fit the usual sequence of 

discontinuous dynamic recrystallization: “energy storage – nucleation – growth”. So the 

first driving forces deal with dislocation generation and recovery, the second with sub-

boundary generation and disorientation, which lead to nucleation, and the last with 

boundary migration. To begin, equations used to represent these driving forces will be 

presented, for each of the three groups. Then, the actual order in which they are used, 

in relation with the geometric framework will be discussed. 

II.A. Equations representing driving forces 

II.A.1. Equations related to dislocation behavior 

As plastic deformation occurs, the first activated mechanism is the generation of 

dislocations. It is coupled with dynamic recovery to control the increase of stored 

energy. To represent them, various formulations have been proposed in literature. The 

most common one was proposed by Laasraoui and Jonas [8]. Their formulation 

assumes a constant mean free path of dislocations, and a recovery rate that is 

proportional to dislocation density. It leads to an initial rounded shape of stress strain 

curves, which fits well austenitic steel behavior for instance. But it does not fit the one 

observed on nickel base superalloys, which tend to exhibit a linear increase of the 

stress at low deformations (Figure II-1). 

Expressions that connect the mean free path of mobile dislocations with the average 

distance between forest dislocations provide a linear increase of the stress. Such a 

formulation was applied to Superalloy 718 [9]. It was chosen for this model too, though 

presented differently. Starting with the Orowan equation (II-1), it is possible to deduce a 

form for which parameters have a more apparent physical meaning.  
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 +++ ≈== ρ
ρρ

ρβρβε bnnbLb 3
 (II-1) 

In this equation, β is a geometric coefficient between 0.5 and 1, b is Burgers’ vector and 

L is the mean free path of newly generated dislocations. The latter is supposed to be 

proportional to the average distance between the already existing dislocations. So n is 

the average number of forest dislocations crossed by mobile dislocations before they are 

definitely stopped. The last form of equation (II-1) results from considering that the 

actual value of β is about the inverse of the square root of 3, i.e. 0.57. Finally one gets 

the expression of dislocation generation in equation (II-2). 

 
bn
ρ

ερ =+  (II-2) 

Dynamic recovery is supposed to verify equation (II-3), and so is it for metadynamic 

recovery too, but with other values for the coefficients r and a. 

 ar ρρ =−  (II-3) 

Both n and r are supposed to be the multiplication of a power law of the strain rate by 

an Arrhenius law to account for temperature dependence. 

It is possible to identify the value of power a in the case of dynamic recovery from 

stress-strain curves. Equation (II-4) is commonly used to link flow stress and 

dislocation density. It has been widely verified for pure metals, but using it for 

superalloys at high temperature may rely on a rather strong assumption. Nevertheless, 

one can use it as a first order approximation. 

 ρασσ bG+= 0  (II-4) 

σ0 is supposed to be a constant for a given curve, α is about 0.5, and G is the shear 

modulus. Equation (II-5) comes by derivation and inversion of (II-4). 
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Then one can write the apparent recovery rate with equation (II-6). 
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And finally, by combining equations (II-6) and an inversion of (II-4), equation (II-7) 

comes as an expression of the apparent recovery rate. 
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In the case of Waspaloy, the application of equation (II-7) to the curves of figure (II-1) 

obtained at 0.1s-1 reveals that the apparent dynamic recovery rate depends linearly on 

the dislocation density, as shown in Figure (II-2). Thus in the case of dynamic recovery 

of Waspaloy, the value of coefficient a is 1. The increase of the apparent recovery rate 

over the linear law is a signature of dynamic recrystallization, which provides an 

additional softening term. The fact that the apparent recovery rate becomes negative or 

that the dislocation density can come back to 0 illustrates that the actual equation for 

the stress is more complex than (II-4). The latter can only be used as a local 

approximation to give an idea of the dislocation density variation, for instance at the 

beginning of the stress-strain curve. 

II.A.2. Equations related to sub-boundaries and nucleation 

A previous investigation revealed that nucleation in Superalloy 718 comes from the 

local disorientation of some sub-grains [4]. A model connecting sub-boundary 

generation and disorientation to nucleation was designed. In the case of Waspaloy, the 

existence of nucleation on second phase particles shows that the same kind of 

mechanism is active. As a consequence, in this model too, nucleation was connected to 
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sub-boundary evolution. However, the disorientation process was simplified a lot in 

order to get some margins in terms of managed complexity for other aspects. To deal 

with the case of Waspaloy, or more generally of coarse ingot grains, two kinds of sub-

boundary/nucleation have to be modeled (necklace and volume). In addition, the 

observed dependence of recrystallization rate with crystallographic orientation [5] could 

be expected to come mostly from sub-boundary evolutions [10]. 

Few variables have to be added to the microstructure description to represent aspects 

related to sub-boundaries. For every MSU i, two sub-boundary densities Ssb i and Ssbv i, 

and two disorientation parameters xi and xv i are defined, respectively for necklace and 

volume sub-boundary/nucleation. The Taylor factor of the MSU is noted MT i. In the 

next equations, the index i will not be mentioned as equations of sub-boundary 

evolution do not depend on the MSU number. 

Six equations are needed to allow the representation of sub-structure evolutions and of 

nucleation. They are grouped by three. Each group is formed of an equation for sub-

boundary generation, one for sub-boundary disorientation, and one for the conversion 

of sub-boundaries into new mobile boundaries. The latter will be converted into a 

nucleation rate. The first group leads to necklace nucleation, and the second one to 

volume nucleation. However, when grains are not coarse enough, bubbles topology is 

not allowed by the geometric framework. In such a case, the few so-called volume nuclei 

that are generated are simply added to the necklace ones. 

The expressions chosen for “necklace” and “volume” sub-boundary generations are 

presented in equations (II-8) and (II-9) respectively. 
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kG, kGV, QG, QGV and DG are coefficients to identify. R is the universal gas constant. F 

and FV are functions of the Taylor factor. Since tests on ingot microstructures have 

been performed for three Taylor factor, three values were actually identified for F and 

FV. Interpolation of these values has not been investigated yet. 

Disorientation variables are abstract ones. x and xV are to be seen as indicators of levels 

of disorientation of the sub-structure. Nucleation starts when they reach the unit. But 

nothing prevents them from increasing above the unit. In practice, it would be difficult 

to manipulate parameters representing these abstract disorientation rates. So the 

model uses equations of critical strain. They are simply the inverse of the disorientation 

rate since the critical value for x and xV is the unit. Equations for critical strains are the 

same for both “necklace” and “volume” sub-boundaries, just with different values for 

their parameters. The equation used is (II-10). 
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kc and Qc are coefficients to identify. For the volume, though the equation is not written, 

equivalent coefficients are kc V and Qc V. Fc and Fc V are functions of the Taylor factor, for 

which three values have actually been identified for both. Disorientation rate is deduced 

easily from previous explanations as shown in equation (II-11). 
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Conversion of sub-boundaries into mobile boundaries is managed by equations (II-12) 

and (II-13), when x and xV are greater than 1. 
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KN, kNV, kNB and p are coefficients of the material. SB is the surface of bubbles per 

volume unit in the considered MSU, calculated by the geometric framework, thanks to 

equation (I-19). The conversion of some sub-boundaries into grain boundaries leads to 

an apparent decrease of the disorientation of remaining sub-boundaries, as shown in 

equation (II-14). Equivalent equation is used for “volume” sub-boundaries. 
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Nuclei size DN is given by equation (II-15) in which, once again, kD and QD are 

coefficients of the model. 
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A division of generated boundary surfaces by the surface 2
NDπ  of a nucleus gives the 

nucleation rates, which are the first input of the geometric framework. Its second input, 

boundary velocities, is going to be presented in the following paragraph. 

II.A.3. Grain boundary migration 

The classic equation of Turnbull (II-16) connects the driving force P seen by a boundary 

with the boundary velocity u , through the definition of M as the grain boundary 

mobility. 

 MPu =  (II-16) 

Boundary mobility depends on temperature and is subjected to solute drag effects and 

disorientation dependence. Since it represents the average mobility of the grain 

boundaries of the microstructure, and integrates a lot of different cases, it is not 

possible to write it based on analytic expressions. The expression used for the average 

grain boundary mobility of a set of grains is equation (II-17). P0 is defined as the grain 

boundary tension of a 1µm grain, as shown in (II-18). γ is the grain boundary energy. λ 
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is a coefficient to identify. M0 is written as an Arrhenius law whose activation energy is 

noted QM, and pre-exponential coefficient is called KM. 
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Two types of driving forces are accounted for: energy stored as dislocations and sub-

boundaries PD, and grain boundary energy PS. The latter is shown in equation (II-19). 
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Factor 1/2D, instead of 1/R+1/R=4/D comes from the fact that the actual curvature of 

grain boundaries is lower than the inverse of the grain radius. 

The dislocation density ρsb stored into sub-boundaries is related to their disorientation θ 

through equation (II-20). N is the number of dislocation families present into the sub-

boundary. Typically, to represent any kind of crystallographic rotation between two sub-

grains, N has to be at least equal to 3. As disorientation is not really calculated in the 

model, it is necessary to rely on an average value of θ. As superalloys are low stacking 

fault energy alloys, θ cannot be very high. A value of 3° i.e. approximately 0.05 radians 

is reasonable. 
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When it comes to evaluate their energy contribution, sub-boundary dislocations are to 

be accounted for with about an order of magnitude lower than free dislocations, as 

shown in equation (II-21) is 0.1. 
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Evaluation of the difference of energy seen by a boundary depends on the type of grain 

interaction. For interaction between grains of the same MSU, the difference of 

dislocation density is expected to be low. It will be considered as one tenth of the actual 

average dislocation density of the grains. The energy of grain boundaries will be 

accounted for at its full potential. The driving force seen by a grain boundary between 

grains of the same MSU i is written in equation (II-22). 

 ZiSiDii PPPP −+=− 1.0  (II-22) 

PZ is the Zener pining force due to precipitates. It slows down grain boundary migration 

or can even block it. It is null when there are no precipitates in the microstructure, i.e. 

typically when deformation is performed above the solvus temperature of δ or γ’, 

depending on the considered superalloy. Expressions of this coefficient have not been 

identified yet for Waspaloy. However, they should be similar to those used in a previous 

model of microstructural evolution of Superalloy 718 [4]. 

For interactions between grains of different MSUs, equation (II-23) only accounts for the 

difference of energy that comes from different dislocation densities on the two sides of 

the grain boundary. Taking into account the grain boundary tension as a term opposed 

to the grain growth was tested. It brought out very instable behavior and difficulties to 

fit the model using simple equations and coefficients. This comes from the fact that 

when nuclei have just appeared, their size is low and thus their boundary tension is 

very high. But this is compensated by a higher local dislocation density due to the 

nature of nucleation sites. This higher local energy allows nuclei growth. As nuclei 

diameter reaches few microns more than their initial size, grain boundary tension 

decreases a lot. Simultaneously, boundary gets out of high energy areas, a bit distant 

from nucleation sites, where dislocation density is more homogeneous and close to the 
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average one of grains. Taking properly into account the grain boundary tension for 

interactions between grains of different MSUs would require calculating one or several 

additional terms with little or even no benefit. As a consequence, the model neglects 

these very local aspects, as other models usually do [3, 9]. 

 ZiDjDji PPPP ±−=−  (II-23) 

These equations allow the evaluation of the various driving forces represented in the 

model. But the order in which these evaluations are actually performed is different from 

the natural one that has just been used. 

II.B. Actual order of evaluation of driving forces and mechanisms 

The algorithm of integration of the model relies on a first order scheme. The high 

number of variables and relationships between them, especially in the geometric 

framework, has prevented us until now from developing a second order scheme of 

integration that satisfies conservation laws. Each increment is calculated in two steps. 

The first is an evaluation of the derivatives of all variables. Only then, integration itself 

is carried out. 

The order in which the rates of variation of variables are calculated is actually almost 

the opposite of the one that could be expected, mostly due to calculation speed 

considerations. The first operations consist in a loop that performs two kinds of 

evaluations for each MSU successively: 

- the evaluation of the driving forces PDi and PSi of the grains of each MSU i., using 

equations (II-19) and (II-21). 

- the calculation of boundary and bubbles surfaces is carried out using the laws 

of the geometric framework expressed by equations (I-12), (I-14), (I-19) and (I-

49). As the loop is incremented, total boundary surfaces are progressively 

calculated to match equations (I-20), (I-21) and (I-22). 
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Then, a new loop over all MSUs of the microstructure is performed to calculate the 

probability parameters resulting from equations (I-23) to (I-28). At the end of this loop, 

the framework is ready for the evaluation of interaction probabilities, and then to 

receive its first input: the grain boundary velocities for each pair of MSUs. Two intricate 

loops are defined so that every pair i-j is calculated only once, knowing that interaction 

j-i is the complementary of i-j. Calculating i-j and j-i together constitutes a faster 

algorithm and provides an additional security to insure volume conservation. So, at 

each increment of these loops, interactions i-j and j-i are calculated with: 

- the velocity rates iju  that come from equations (II-22), (II-23) and (II-17). 

- the rates of variation of the volume of grains, of the dimensions of grains and of 

the volume of MSUs. They are stored in temporary variables. For each MSU, 

volume variations of grains are actually summed into two intermediate variables. 

One stores the sum of positive contributions to volume variation, and the other 

stores the sum of negative ones. Depending on the type of grain interaction, the 

equations to use are (I-29) to (I-31), or (I-32) to (I-37), or (I-40) to (I-42) and (I-

45), or (I-52) to (I-54) and (I-57). The latter is actually (I-45) again. 

Following calculations are only performed if the strain rate is strictly positive. 

Through a new loop, for each MSU, the calculation of sub-boundary generation is 

performed using equations (II-8) and (II-9). Evaluations of nucleation rates follow with 

equations (II-12) and (II-13), combined with equation (II-15). Nucleation rates are stored 

into temporary variables. These calculations provide the necessary data to use 

equations (II-10), (II-11) and (II-14) that manage disorientation rates. 

Once sub-boundary evolution and nucleation for all MSUs have been calculated, stored 

nucleation rates provide the second input of the geometric framework to evaluate 

additional variations of volume and size of grains through equations (I-58) to (I-62) and 

(I-63) to (I-66). 
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Then, for each MSU, the rate of variation of dislocation densities is calculated thanks to 

equations (II-2) and (II-3). If the strain rate is null, only the metadynamic version of 

equation (II-3) has to be applied. 

To finish, for any strain rate, the effects of grain volume variations on dislocation 

densities and sub-boundary densities have to be taken into account. They depend on 

the sign of the volume variation, which explains why contributions to volume variations 

were stored into two different intermediate variables for each MSU. Firstly, positive 

volume variations of grains induce a softening term through a decrease of these 

densities. This softening term results from the multiplication of the considered density 

by the ratio of the positive volume variation of the grain over its volume. It can be 

understood as a dilution of the considered density into a larger volume. Secondly, a 

parameter Kabsorb is defined to represent the heterogeneity of repartition of sub-

boundaries in grains. As nucleation comes from sub-boundaries, it tends to happen in 

areas where sub-boundary densities are greater than their average value. Then, when 

nuclei grow, they tend to consume these areas first, which induces an apparent 

decrease of the average sub-boundary density of the grain that is consumed. This 

apparent decrease is treated as an additional softening term of sub-boundary densities. 

It is calculated as the product of Kabsorb by the ratio of the negative volume variation of 

the grain over its volume. This last term is extremely important to represent the 

progressive decrease of the recrystallization rate during metadynamic recrystallization. 

After the evaluation of the rate of variation of all the variables of the structure, 

integration at the first order comes naturally from adding to each variable the product 

of its total variation rate by the time increment. However, as long as volume nucleation 

has not started, and for grains that are not supposed to support bubbles topology, a 

numerical security is applied. It consists in deducing the volume of the grain not from 

its integration but directly from the new grain dimensions. It insures that the volume of 

the grain and the one of the envelope are strictly identical, and that no bubble will 
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appear due to the accumulation of some numerical error. To finish, for each MSU, grain 

density is updated as the ratio of the volume of the MSU over the unit volume of the 

grains it contains. Then the microstructure is ready for a new increment. 

II.C. Measurement simulation 

In order to solve the model, it is necessary to extract from the microstructure the 

various values that have to be compared with the measured ones: a measurement 

simulation has to be performed. 

Recrystallized fraction is simply the volume of the MSU of highest index, NMSU-1,, as it 

receives the nuclei produced by the microstructure. Recrystallized grain size is deduced 

from the size of the grains of this MSU too. In order to represent the effect of a section, 

which tends to give a lower value than the volume diameter, the grain size of the MSU is 

multiplied by the square root of 2/3. This value comes from stereological considerations 

that will not be detailed here. If several hits have been calculated and some 

recrystallized grains of previous hits are stored in MSUs of lower index, the total 

recrystallized fraction is the sum of the volumes of these MSUs. And the average grain 

size (if it makes sense) is supposed to be the average of the grain size of each MSU, 

balanced by its volume. 

In the case of wrought initial microstructures, the size of the remnants of initial grains 

is calculated with the same method as for recrystallized ones. However, for ingot 

microstructures, the size of remnants of initial grains cannot be evaluated in the same 

way. In this case, the apparent size of remnants is considered to be the size of the cells 

that are delimited by the percolated bubbles of recrystallized grains. At low values of 

bubbles fraction, such assertion makes almost no sense. But when the fraction of 

bubbles reaches about 50%, most of the bubbles are in contact with others. They define 

a volume network that isolates unrecrystallized areas from each other, even if they 

originate from the same initial grain. If these cells are supposed to be based on the 
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shape of a dodecahedron, delimited such that each face contains a particle involved in 

volume nucleation, one can conclude that the volume of a base-cell is the one 

containing six of these particles. Then, assuming that a base-cell is similar to a sphere, 

its size is supposed to be given by equation (II-24). And the size of remnants of initial 

grains in a section is estimated by equation (II-25). 
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III. Application to Waspaloy 

The model architecture that has been described until now was design so that it is 

applicable to various alloys. However, equations were chosen to fit the behavior of 

Waspaloy. Thus, for other superalloys, some modifications of equations may be 

necessary in order to take into account other dependencies that have been neglected, or 

suppress some of them, as they may not be required. However, even if this part will deal 

with the resolution of the model specifically for Waspaloy, its topic is to propose a 

method of resolution and identification of coefficients that should be applicable to other 

alloys too. 

As one could see in the two first parts, the meso-scale mechanism-based model is very 

different from one based on the Avrami equation. One can expect that the resolution 

method is very different too. It is not possible to identify all parameters at the same time 

as it is done with a model based on the Avrami equation, using multi-linear regression 

methods. In the Avrami-based model, coefficients have little physical meaning, so 

almost any value that fits experimental data is acceptable. On the contrary, the model 

that was designed here relies on coefficients that aim at representing driving forces and 

their dependencies with microstructure or thermomechanical values, even when 

equations may look very simplified and far from reality. In addition, it cannot be solved 

using analytical techniques as multi-linear regressions. Only numerical optimization 

can be used. Therefore, an initial solution has to be identified, at least on some specific 

areas of the model. The first of these areas, which anybody may think a priori as the 

last to solve, is static grain growth. 

III.A. Identification of parameters of static grain growth 

Static grain growth is the simplest regime that the model has to manage. It only 

involves grain boundary tensions and grain boundary mobility. Grain boundary energy 
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is usually approximately known, a least its order of magnitude. For nickel and its 

alloys, it is about 0.7-0.9 Jm-2 [11, 12]. For this model, it was considered to be 0.7 Jm-2. 

When the model is reduced to the static grain growth of one single MSU, it is possible to 

obtain analytical solutions, depending on the value of parameter λ in equation (II-17). 

Firstly, the driving force is given by equation (III-1). The grain boundary velocity is then 

written in equation (III-2). 
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λμγ
⎟
⎠
⎞

⎜
⎝
⎛=

D
m

D
M

D 1
2

3 0  (III-3) 

 ktDD =− ++ 2
0

2 λλ  (III-4) 

Previous investigation [2] provides equation (III-5) for static grain growth in which the 

exponent on D is 3 (D in meters). As a consequence, coefficient λ has to be equal to 1: 

average grain boundary mobility of a microstructure is approximately proportional to its 

average driving force. In the specific case of λ=1, equation (III-4) becomes equation (III-

6) with D in meters. 
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Identification of parameters leads to a first estimation of M0 in equation (III-7), 

in m4J-1s-1. 
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Once grain boundary mobility can be evaluated, it is necessary to get the order of 

magnitude of dislocation densities to generate through deformation such that 

recrystallization rates are reproduced by using this mobility. 

III.B. Order of magnitude of dislocation densities 

It is difficult to evaluate grain boundary migration rates during deformation from 

measurements of recrystallized fractions because nucleation contributes to the overall 

recrystallization rate too. On the contrary, the metadynamic regime provides an 

interesting insight because only the migration of grain boundaries that are the interface 

between recrystallized and initial grains is responsible for the recrystallization fraction 

increase. If one can estimate the migration rate of these grain boundaries during 

metadynamic evolution, then, provided an estimation of the grain boundary mobility, he 

can deduce at least the order of magnitude of dislocation density. 

To do that, a model of recrystallization based on the Avrami equation was designed on 

data provided by Shen [2], though in a special form for the metadynamic regime. 

Obtained expressions are presented in equations (III-8) to (III-11). 
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The latter insures that the model is continuous from the dynamic to the metadynamic 

regime. If one assumes that the size of the remnants of initial grains follows equation 

(III-12) during the metadynamic regime, then the disappearance rate of these grains is 

connected to the recrystallization rate. It leads to the estimation of the grain boundary 

velocity of interfaces between initial and recrystallized grains, as written in equation (III-

13). And finally, the apparent dislocation density that corresponds to such a grain 

boundary velocity is given by equation (III-14) when λ=1.  
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The latter was calculated for each metadynamic recrystallized fraction published in 

Shen’s article. No clear dependence could be identified with strain, strain rate or initial 

grain size. Only the temperature and holding time have clear influence on the evolution 

of the apparent dislocation density, as one can observe on Figure (III-1). 

At 1177°C (2150F), extrapolated values of dislocation densities at the end of 

deformation would match approximately the amplitude of variation of dislocation 

densities found on Figure (II-2), which was drawn at the occasion of a discussion about 

strain hardening and dynamic recovery. If it appears on that figure that, though 



 

42 

maximum dislocation density is roughly the same, both n and r change a lot from the 

first hit to the second, while temperature and strain rate are the same. The only 

noticeable change between the two hits conditions is the initial grain size. Since the 

amplitude of variation of apparent dislocation density is roughly the same for both hits, 

instead of trying to identify n and r, it is easier to manipulate n and the product nr. It is 

related to the dislocation density given by the equilibrium of strain hardening (equation 

II-2) and dynamic recovery (equation II-3) given by equation (III-15). Manipulating n and 

ρeq insures that changing n will only affect the strain hardening rate, without changing 

the maximum level of stored energy that will be reached, as r is adjusted to compensate 

the variation of n. 

 
bnreq
ερ =  (III-15) 

Then, one can obtain orders of magnitude of these parameters. The number of forest 

dislocations crossed by mobile ones before they are stopped, n, could be set to vary 

between 10 and 30, as a first guess, given the amplitude of temperature on which the 

model has to function. A variation of the equilibrium dislocation density, at 1s-1, 

between 150 at 1000°C and 20 at 1120°C looks reasonable. Then a first estimation of 

values of r is deduced: about 30 at 1000°C and 45 at 1121°C. Sensibilities of n and r to 

the strain rate are supposed to be negligible as a first guess, because strain rate could 

not be identified as a strong discriminator in Figure III-1, contrarily to time and 

temperature. 

From that point, the model is known to have reasonable initial values of grain boundary 

mobility, strain hardening and dynamic recovery. Values of critical strain can be 

initialized to about 0.1. Influence of the Taylor factor is neglected in the initial solution. 

The size of nuclei can be set to vary between 5 and 10 microns. There is no clear 

method to guess initial values of sub-boundary generation. But since all other values 

can be initialized understandably, remaining ones can be adjusted manually in order to 
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obtain the first solution, and then start the process of calibration and numerical 

optimization of all parameters simultaneously. To manage these adjustments, specific 

software dedicated to the treatment and resolution of such recrystallization models was 

designed. 

III.C. Recrystallization modeling software: RX-MOD 

The first version of this software was designed to develop a model of microstructural 

evolution of wrought Superalloy 718 [4]. It was modified and extended to manage all the 

data and calculation management tasks required to develop models dealing not only 

with wrought but also ingot microstructures. Emphasis has to be put on the fact that it 

would be highly hazardous to try to develop mechanism-based models that aim at being 

optimized, especially for industrial application, without having such toolbox available. 

The RX-MOD software architecture is organized around seven modules, each of them 

being a specific set of tools. 

The first one is the experimental database. It contains the nominal definition of each 

test that was performed. For each characterized microstructure, a set of values of grain 

sizes, recrystallized fractions… etc. is to be completed with measured data. Each value 

is doubled in order to store the results given by the model and allow later comparison of 

measured and calculated values. 

A thermomechanical module aims at estimating the actual evolution of temperature in 

samples, using finite difference methods of integration inspired from those proposed in 

literature [13]. Among other aspects, it calculates the heating due to deformation and 

cooling rates during quenching. The overall role of this module is to allow taking into 

account, for every test defined in the experimental database, the difference between its 

nominal definition and the actual path of solicitation seen by the point where the 

microstructure was characterized. When the calculation would be too complex for this 
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rather simple module, it is possible to initialize the thermomechanical path using data 

provided by an FEM tracking point. 

The core of the software is the module that performs the integration of the model on the 

thermomechanical path. It controls the stability of integration in order to optimize the 

time step at each increment. This control is performed by the executable of the 

software, but the model itself, all what has been presented in parts I and II of this 

paper, is externalized into a dynamic linked library (DLL). As a consequence, just 

changing the name of the DLL to load allows running another model of recrystallization. 

A module, part of the DLL, carries out measurement simulations. From a 

microstructure made of MSUs, it extracts the values that are to be stored in the 

experimental database, taking into account section effects for instance. 

To perform numerical optimization, a module using gradients algorithms (Fletcher-

Reeves and Ribière-Polak) can modify the parameters of the model in order to reduce an 

average error defined in the experimental database. This module still needs 

improvements to accelerate the stability and convergence of its algorithms. 

A module that loads data extracted from Deform® calculations can perform the 

integration of the model on each node of a bi-dimensional (2D) FEM mesh. Calculations 

on 3D-meshes have not been tested yet and will need adjustments. They are the 

ultimate goal of the current study, since the model is designed for the primary 

processing of ingots, especially cogging. 

Finally, a graphic editor gives access to the comparison of measured and calculated 

data, in order to identify model weaknesses, during the calibration process. It also 

draws maps of the various values provided by the model when applied to FEM 

calculations. 
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III.D. Microstructure initializations 

Microstructures are initialized as a set of five MSUs. The two first MSUs (indexes 0 and 

1) are for initial grains. They support bubbles topology if initial grains are coarse 

enough, i.e. for ingot microstructures. In such a case, they support grain anisotropy too 

in order to account for the columnar shape of grains, with an anisotropy ratio of 10 

(Dz/Dx=10, and Dx=Dy=5000µm [5]). The volume partition between the two MSUs is 

90%-10%. The Taylor factor of <100> grains in uniaxial compression, which is 2.45, is 

affected to the second MSU in order to represent grains that tend to have a low 

recrystallization rate and may remain as ALAs. The first MSU is given the main Taylor 

factor of the microstructure. For wrought initial microstructures, it is 3.06, i.e. the 

average Taylor factor of f.c.c. random texture in uniaxial compression. For ingot 

microstructures, if the main axis of columnar grains is transverse to the compression 

axis, it will be 3.1, if the axis is at 45°, it will be 3.55, and if they are parallel, it will be 

2.45. The same grain size is given to these two MSUs: it is the initial grain size 

measured, multiplied by the square root of 3/2, so that when the measurement section 

is simulated as described in II.C, it results in the expected initial grain size. 

The MSU of highest index, 4, contains recrystallized grains. It is initially void. It receives 

the nuclei generated during the current deformation as defined in the geometric 

framework. If another deformation is performed, then, just before it starts, recrystallized 

grains of MSU 4 are transferred into the two intermediate MSUs (indexes 2 and 3), 

where the recrystallized grains that appeared during previous hits are stored. 90% of 

recrystallized grains go to MSU 2, and 10% go to MSU 3, and their Taylor factors are 

supposed to be respectively 3.06 and 2.45. This is necessary in order to be consistent 

with the initialization method applied for MSUs 0 and 1: after several hits, when MSUs 

0 and 1 have completely disappeared, if a new hit is performed, MSUs 2 and 3 are going 

to behave as a wrought microstructure that would have been initialized in MSUs 0 and 

1, and the model will behave the same way. 
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III.E. Parameters identification 

To carry out the resolution, all available data from Shen [2] and Weaver [5] were filled in 

the database. The first goal was to reach an average error on recrystallized fractions 

lower than 10% before thinking about tests on industrial applications and identification 

of model weaknesses. It is actually 9.5%. Three “error graphs” that represent calculated 

recrystallized fractions vs. measured ones are presented in Figures (III-3). Recrystallized 

fractions measured after long holding times on ingot microstructures exhibit the highest 

discrepancy, especially when grains axis were at 45° from the compression axis. It 

comes from the fact that 45° microstructures have the widest range of Taylor factors: 

the actual energy stored in grains at the end of deformation may be far from the average 

one calculated using the model. Then, integrated on several minutes or hours, such 

differences induce a larger discrepancy of recrystallized fractions. Given the size of 

initial grains, very few were covered by characterized areas. It explains why the model 

exhibits poor precision on this set of data. If these are not included, the average error is 

down to 8.4%, and even 7.3% if all ingot metadynamic recrystallized fractions are 

excluded. 

The parameters of driving force equations that were used to obtain these results are 

going to be presented. But first, the only parameter of the geometric framework is given: 

the best value for the density (nPSN) of particles on which volume nucleation can 

happen, was found to be 20 particles per cube millimeter. It gives an inter-particular 

distance of about 450µm. It is in agreement with the typical distance between bubbles 

observed on micrographs [5]. 

To manage equation parameters in an easier way, the software requires the definition of 

two reference temperatures that are used to avoid manipulating Arrhenius equation 

parameters directly. These two temperatures have been set to 1000°C (1832F) and 

1177°C (2150F). So, for all parameters that depend on temperature, their values will be 
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given at these two reference temperatures, along with corresponding Arrhenius 

coefficients (pre-exponential and apparent activation energy). 

III.E.1. Grain boundary mobility 

The actual apparent activation energy of grain boundary mobility is slightly greater than 

the first guess coming from Shen’s article, as one can see on equation (III-16), 

in µm3N-1s-1. 
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At 1000°C, M0 = 4.0 107 µm3N-1s-1 = 4.0 10-11 m3N-1s-1. 

At 1177°C, M0 = 5.0 1010 µm3N-1s-1 = 5.0 10-8 m3N-1s-1. This value may seem 

overestimated. But one has to remember that it is the mobility for the grain growth of a 

1µm grain, which never happens at so high temperatures. Maybe, a saturation value of 

the grain boundary mobility should be implemented, though it has not been necessary 

to solve the model (Figure III-5). Driving forces provided by the model, at a given 

temperature, may always stay lower than the one required to reach such a saturation 

value. 

III.E.2. Dislocations related equations 

The average number of dislocations crossed by the newly generated ones before they are 

stopped is given by equation (III-17). 
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At 1s-1 and 1000°C, n = 2.5, and at 1177°C, n = 9. These values are quite lower than the 

ones initially estimated, by about a factor 5. These are necessary to fit the observed 

metadynamic recrystallization rates for low deformations (about 0.2), which are almost 

as high as those obtained for greater strains. It is possible that near the first sites of 
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nucleation, dislocation density increases a lot faster than the macroscopic one which 

defines the stress evolution. 

Equilibrium dislocation density is given by equation (III-18). 
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At 1s-1 and 1000°C, ρeq = 200 µm-2 = 2 1014 m-2, 

and at 1177°C, ρeq = 20 µm-2 = 2 1013 m-2. 

Equilibrium dislocation density exhibits a low dependence with temperature. It is even 

more interesting to notice it because, on the contrary, grain boundary mobility is 

extremely dependent with temperature. One could think it is overestimated. If it were, 

equilibrium dislocation density would have a very high temperature dependence in 

order to compensate it and provide, through the product of mobility and stored energy, 

the appropriate recrystallization rates. The low temperature dependence of equilibrium 

dislocation density proves that the dependence of grain boundary mobility with 

temperature, though very high, probably due to solute drag effects, is actually a 

required minimum. 

The values of dynamic recovery rate are obtained from equation (III-15). 

At 1s-1 and 1000°C, r =113, and at 1177°C, r = 100. Since values of n, which include 

local behavior, are under evaluated, those of r are over evaluated in order to 

compensate and reach the necessary equilibrium dislocation density anyway. It can be 

expected that their macroscopic counterpart should be about 5 times lower. 

Metadynamic recovery rate is given by equation (III-19). 
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At 1000°C, rm-dyn = 4 10-4 µm2s-1 and at 1177°C, rm-dyn = 1.5 10-2 µm2s-1. The value of 

power a, which was equal to 1 for dynamic recovery, is difficult to adjust for 

metadynamic recovery. Three values, 1.0, 1.5 and 2.0, were tested. It is possible to 

adjust the overall behavior by adjusting rm-dyn in consequence. However, to fit the 

metadynamic recovery of wrought microstructures, a value of 2 was the best, while 1 or 

1.5 suited better the metadynamic evolution of ingot microstructures. The value of rm-dyn 

given here is for a=2. Such metadynamic recovery rates are able to bring dislocations 

densities to almost zero in times of 10 seconds to 2-3 minutes, depending on 

temperature. For ingot microstructures deformed and held at very high temperatures, 

very quickly, after 10-20 seconds, metadynamic recrystallization has to rely only on the 

energy stored in sub-boundaries to progress, which is quite lower. It means that for 

multi-hit situations, increasing time between hits provides little benefit. 

After free dislocations have been annihilated by recovery, when sub-boundaries provide 

the only driving force for recrystallization, a progressive decrease of recrystallization 

rate of the metadynamic regime of ingots is observed. Impingement of bubbles is 

partially responsible for that but it is not enough to explain it. This decrease is related 

to another geometric effect: the spatial distribution of sub-boundaries. The identified 

value of Kabsorb is specified here, with a value of 0.6. It means that initial grains tend to 

have a repartition of sub-boundaries such that the actual value of sub-boundary 

density near recrystallized areas is about 60% higher than the average one over the 

whole grain volume. When these recrystallized areas grow, they consume the zones of 

high sub-boundary density first. And if new sub-boundaries are not generated, as in 

metadynamic regime, the more recrystallization progresses, the more the sub-boundary 

density is low. Thus the driving force decreases through geometric effects, which add to 

impingement effects already accounted for in the geometric framework (Figure III-6). 
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III.E.3. Sub-boundary and nucleation related equations 

Sub-boundary generation is involved in two forms, depending on where the nuclei it 

may produce will be located. “Necklace” sub-boundary generation is given by equation 

(III-20), and in the volume, it is equation (III-21). 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛∗= −+

1500
exp133565exp106.4 6 DMF

RT
S Tsb ε  (III-20) 

For a random set of crystallographic orientations, i.e. for wrought microstructures, MT=3.06. 

This value was chosen as a reference to which other Taylor factor values are compared. As a 

result, F(3.06) was set to 1. 

At 1s-1, for F(MT)=1, and a grain size that tends towards 0, the necklace sub-boundary 

generation rate is 1.4 µm2/µm3 per deformation unit at 1000°C and 0.3 µm2/µm3 at 1177°C. 

For the uniaxial compression of ingot microstructures oriented so that the main axis of 

columnar grains is transverse to the compression axis, MT is about 3.1. It was chosen that 

F(3.1) would be equal to the one of a wrought microstructure, i.e. 1. For grains oriented 

parallel to the compression axis, MT=2.45. F(2.45) was found to be 0.9. It means that axial 

grains tend to produce 10% less necklace sub-boundaries than average random or 

transverse orientations. For grains oriented at 45° of the compression axis, MT is about 3.55. 

F(3.55) was found to be equal to 1 again. One can conclude that grain orientation has very 

little influence on the generation of necklace sub-boundaries. 

Necklace sub-boundary generation decreases slowly as grain size increases, and so does the 

rate of nucleation too. But written by surface unit of grain boundary instead of by volume 

unit, the term of dependence with the grain size becomes D exp(-D/1500). It increases until 

about 1500µm and decreases slowly afterwards. The meaning of the initial increase is that 

the coarser the microstructure, the more it is difficult to adjust strain incompatibility 

between neighboring grains.  Big grains tend to accumulate more geometrically necessary 

dislocations at their periphery, which induces a higher nucleation rate per surface unit of 

initial boundary, though the overall nucleation rate of the structure is lower. For very big 
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grains like ingot ones, one could have expected a simple stabilization of sub-boundary 

generation/nucleation rates at a high value. The obtained decrease is difficult to 

understand. Nevertheless, as grains get very coarse, strain incompatibility is more and more 

accommodated in the volume. 
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As for necklace sub-boundary, the Taylor factor of a randomly oriented microstructure 

was used as the reference for volume sub-boundary generation, and transverse ingot 

grains in uniaxial compression where supposed to behave similarly. So 

FV(3.06)=FV(3.1)=1. 

At 1s-1, for FV(MT)=1, the volume sub-boundary generation rate is 1.1 µm2/µm3 per 

deformation unit at 1000°C and 0.85 µm2/µm3 at 1177°C. 

For axial grains, FV(2.45) was found identical to the one of transverse grains, i.e. 1. For 

grains oriented at 45°, it was found to be FV(3.55)=1.1: 10% more volume sub-boundary 

are generated in average for 45° grains. It may look surprising to see, here again, so low 

dependence of sub-boundary generation with the orientation. However, observed 

metadynamic recrystallization rates are not so different from an orientation to another. 

And it has to be reminded that after few tens of seconds of holding time, because of 

metadynamic recovery, only sub-boundaries provide the driving force for metadynamic 

recrystallization. Thus sub-boundaries had to be generated in similar quantities. The 

investigation of critical strains, and related disorientation rates, reveals where 

crystallographic orientation has the largest influence. 

The critical strain for necklace nucleation is given by equation (III-22), and in the 

volume, it is equation (III-23). 

 ( )Tcc MF05.0=ε  (III-22) 
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No dependence of necklace critical strain could be identified with temperature. On the 

contrary, its dependence with grain orientation is very strong. Once again, average 

behavior of a randomly oriented microstructure is the reference, as the one of 

transverse grains, so FC(3.06)=FC(3.1)=1. For grains oriented at 45°, FC(3.55) was found 

to be 0.9, i.e. the disorientation rate is about 10% higher. For axial grains, FC(2.45) was 

found to be dramatically larger with a value of 2.5. It means that the disorientation rate 

of necklace sub-boundaries is 2.5 times slower than for other cases. Sub-boundaries 

are generated in similar quantities, but they tend to delay considerably their conversion 

into high angle boundaries. We attribute such behavior to the fact that axial grains 

have not only a low Taylor factor but also the same for all of them and, most important, 

to the stability of their orientation in uniaxial compression. The two latter items must 

limit strain heterogeneity a lot, whereas it is a necessary condition to accumulate 

geometrically necessary dislocations in sub-boundaries, and initiate nucleation. 
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Little dependence with temperature of the critical strain for volume nucleation was 

found. For FCV(MT)=1, i.e. for wrought and transverse ingots microstructures, it varies 

form 0.3 at 1000°C to 0.22 at 1177°C. These values are greater than those of necklace 

nucleation. It shows that second phase particles do not have as strong effect on 

disorientation as (initial) grain boundaries. As noticed in the case of necklace critical 

strain, for grains oriented at 45°, FCV(3.55) is about 0.9, i.e. it gives a 10% higher 

disorientation rate. But for axial grains, once again, the critical strain is much higher, 

by a similar value FCV(2.45)=2. Clearly here, the disorientation delay is related to the 

stability of deformation of axial grains. Second phase particles which are supposed to 

induce a spread of crystallographic orientations cannot play that role probably because 

the slightly different deformation tensor they induce in their neighborhood is not able to 

spread orientations away from the <100> fiber. The delay of nucleation cannot be due to 
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an energy criterion because metadynamic recrystallization rate of axial grains is almost 

the same as the one observed for the two other orientations (transverse and 45°), which 

shows that stored energies are actually very similar. 

At every instant during deformation, once critical strain is reached (x=1 or xV=1), 

nucleation starts. A fraction of sub-boundaries tends to become high angle boundaries 

that delimit nuclei. The rate of conversion for necklace nucleation is given by equation 

(III-24) and in the volume it is equation (III-25). 

 ( ) sbbsb SxSS 10.1 −== +−
ε  (III-24) 

 ( ) ( ) sbVBbVVsb SxSSS 17501.0 2 −+== +−
ε  (III-25) 

The coefficients that define the conversion rates are related to the number of sites 

where sub-boundaries of high disorientation may become grain boundaries. As long as 

bubbles of recrystallized grains have not developed around second phase particles, the 

density of zones potentially affected by volume nucleation is very low. It is just the areas 

surrounding second phase particles. Thus the conversion rate was found to be about 

two orders magnitude lower than the one found for necklace nucleation, which can rely 

on existing high angle boundaries and on their role of site of accommodation of strain 

incompatibility. But when bubbles of recrystallized grains develop, the areas affected by 

volume nucleation get larger. They could have been expected to be just proportional to 

the surface of bubbles in grains, but it is actually more than that, as a square 

relationship was found to be necessary. It is possible that not only the surface of 

bubbles itself increases the density of sites, but also that, as bubbles grow, they induce 

a larger perturbation of the strain distribution inside the grains, which may accelerate 

sub-boundary conversion too. 

Finally, the nuclei size is given by equation (III-26). 
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It provides nuclei of 7µm at 1000°C, and 13µm at 1177°C. Dependence with the strain 

rate could be added to provide a more realistic behavior in some situations. However, 

such an addition does not induce a noticeably lower average error of the model, while it 

increases the number of parameters to adjust. The goal is to represent only 

dependencies that were absolutely necessary to reach an average error of the model 

below 10%.  
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Conclusion 

A meso-scale mechanism-based model of recrystallization was developed. It relies on 

two main parts: a geometric framework and a set of differential equations that represent 

driving forces. The geometric framework is based on MesoStructure Units (MSUs) that 

can be seen as aggregates of grains of similar properties and behavior. MSUs are the 

elementary bricks used to perform the geometric description of microstructures. From a 

set of geometric assumptions, mainly related to grain locations and shapes, a set of 

laws is obtained. Its role is to insure that the geometric description remains meaningful 

through mechanisms that affect grain geometric variables, i.e. nucleation and grain 

growth. The combination of the geometric description and of these laws constitutes the 

geometric framework. For instance, the geometric framework insures volume 

conservation naturally. It responds to two types of input: the grain boundary velocity of 

each pair of MSUs, and the nucleation rates produced by each MSU. These two inputs 

are provided by equations that represent driving forces. These equations can be 

separated in three groups, which correspond to the discontinuous dynamic 

recrystallization main sequence: energy storage, nucleation and grain growth (boundary 

migration). Energy storage equations define the evolution of dislocation densities, with 

strain hardening and recovery. One could add to this group sub-boundary generation 

equations, though they belong to the second group too. This group connects sub-

structure evolution with nucleation. Sub-boundary disorientation equations induce 

disorientation variables to reach their critical value. Then, equations that represent the 

conversion of some sub-boundaries into grain boundaries are used to obtain the 

nucleation rate. Finally, for the third group, grain growth and boundary migration rely 

on a grain boundary mobility equation and on equations that define the pressure seen 

by the grain boundaries during the various kinds of interactions taken in charge by the 

geometric framework. 
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The model was implemented in RX-MOD, software dedicated to the treatment of such 

models of microstructural evolution, in order to be applied to Waspaloy, for which a lot 

of experimental data was available, for wrought microstructures and ingot ones. The 

latter include an investigation of grain orientation effects, which was shown to have 

great influence on recrystallization rates, especially during the dynamic regime. 

The model could be solved to reach an average error on recrystallized fractions below 

10%. However, average error depends on the type of data. Wrought microstructures in 

dynamic and metadynamic regimes, and ingot ones in the dynamic one, exhibit the best 

precision, with about 7.5% average error. But taking into account the metadynamic 

regime observed on ingots increases the discrepancy. We think that it is mostly related 

to the size of characterized zones, which makes measurements very sensitive to the 

local Taylor factor. The model reveals that, for ingot microstructures, most of the grain 

orientation dependence lies in sub-boundary disorientation kinetics, especially for so-

called axial grains, i.e. grains whose <100> axis is parallel to the compression axis. For 

these, very much lower disorientation kinetics was necessary to represent the required 

delay of nucleation. It was attributed to the stability of the <100> fiber during uniaxial 

compression. The ingot metadynamic regime precision is the best for axial grains, a bit 

worse for transverse grains, and looks bad for 45° grains. This is to be related to the 

range of Taylor factors present in the structure, as one can see that the larger the range 

of Taylor factors, the higher the discrepancy of measured data. For axial grains, which 

all have the same Taylor factor in uniaxial compression, the discrepancy was the lowest 

and the model exhibits an acceptable behavior for instance. To reach observed local 

variations, a calculation made on extreme Taylor factor values can be considered for 

future investigations, in order to evaluate the discrepancy of recrystallized fractions to 

expect. 

Though they provide interesting insight on the involved mechanisms, sub-boundary 

and nucleation equations are still empirical. One could for instance wonder if the 
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conversion rates should not carry some orientation dependence. Dependence of sub-

boundary generation with the strain rate may look appropriate. But none of them really 

improves the model response in terms of overall error. However, deeper re-formulation 

could help reducing the number of parameters, obtain more meaningful expressions 

and re-connect comparable behaviors. Strong similarities between necklace and volume 

sub-boundary parameters tend to push in that direction. In addition, once bubbles of 

recrystallized grains have percolated and they isolate the remnants of initial grains from 

their neighbors, it may be possible to deal with these remnants just like regular grains 

from a wrought microstructure. Such consideration puts the focus on the links between 

necklace and volume sub-boundaries, as the latter would have to be considered 

suddenly like necklace ones. Required continuity of the model through this operation 

may impose some constrains or help understanding better the dependence of the 

conversion rate of volume sub-boundaries with the surface of bubbles.  

In terms of extension of the model to other superalloys, with minimum amount of tests 

and characterized microstructures, it is quite probable that crystallographic orientation 

influences should not be too different. They are low in most cases. And the very special 

behavior of axial columnar grains identified on Waspaloy would at least provide an 

interesting first guess. But the variation of sub-boundary generation rates from an alloy 

to another is difficult to predict, given the still empirical character of sub-structure 

evolution equations at this stage of development. Grain boundary mobility equation 

parameters need only few tests of grain growth of a fine recrystallized microstructure – 

after a strong deformation for instance – to be identified. Strain hardening and recovery 

are not expected to change too much, since the shape of stress-strain curves does not 

change very much either. Similarities will appear through an increase of the number of 

alloys treated with this modeling method, and one can expect that each new alloy added 

will help reducing investigations for the next ones. 
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It is important to realize how different this model adjustment is different from an 

Avrami-based one. Most values of driving forces at extreme temperatures of the tested 

domain could be set almost as round ones, which shows that the most important is 

their order of magnitude more than their actual value. It means that, contrarily to an 

Avrami-based model, the response of the model is not given so much by parameters 

that can change dramatically the shape of the Avrami curves, but by its deep structure 

and inner interactions. The orders of magnitude of parameters, since almost all of them 

represent some physical meaning, will not change dramatically from an alloy to 

another, at least of close compositions. Though at this stage of development it may be 

difficult to guess which parameters will need to be modified and how, this modeling 

method is very promising to progressively reduce thermomechanical testing in the 

future. 

The model was implemented to be applied on 2D and 3D FEM calculations. Only 2D 

calculations have been tested yet (Figure III-7). 3D cases will bring questions about 

actual average Taylor factors to use in the case of complex deformation tensors, and 

about interpolation of Taylor-factor-dependant functions for which only discreet values 

where investigated. 
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Figures 

 

 

 

 

Figure I-1: (a) Envelope-envelope and (b) bubble-envelope interactions 
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Figure II-1: Double-hits performed at 1177°C on wrought Waspaloy 

with a 3 second holding time between hits 
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Figure II-2: Apparent recovery rate on a double-hit performed at 1177°C and 0.1s-1 

on wrought Waspaloy with a 3 second holding time between hits 
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Figure III-1: Dislocation densities deduced from metadynamic recrystallization rates 

of an Avrami formulation and estimation of grain boundary mobility 
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Figures III-3-b: error graphs with values of dynamic and metadynamic 

recrystallized fractions of wrought and ingot microstructures 
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Figures III-3-b: error graphs with values of dynamic and metadynamic recrystallized fractions 

of wrought microstructures, dynamic values of ingots microstructures, and metadynamic 

values of axial and transverse ingot microstructures 
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Figures III-3-c: error graphs with values of dynamic and metadynamic recrystallized fractions 

of wrought microstructures and dynamic values of ingots microstructures 
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Figure III-4: error graph for grain sizes – average error: 13% i.e. about half an ASTM 
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Figure III-5: Grain boundary mobility with saturation value 

and grain boundary velocity in arbitrary units 
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Figure III-6: Metadynamic recrystallized fractions of axial ingot deformed at 1177°C 

 

 

Figure III-7: Map of recrystallized fraction in a double-cone 

 


